Surname			Centre Number	Candidate Number
First name(s)				2
	GCE AS			
wjec	B400U20-1	I III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Part c	duqas

FRIDAY, 15 OCTOBER 2021 – MORNING

BIOLOGY – AS component 2 Biodiversity and Physiology of Body Systems

1 hour 30 minutes

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	10				
2.	10				
3.	12				
4.	18				
5.	16				
6.	9				
Total	75				

ADDITIONAL MATERIALS

In addition to this paper you will require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not used gel pen or correction fluid.

You may use pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The assessment of quality of extended response (QER) will take place in question 6.

The quality of written communication will affect the awarding of marks.

B400U201 03

B400U201 05

(ii)	During expiration there is a risk of collapse of the alveoli due to the positive pressure. Suggest how the alveoli are adapted to deal with this. [2]	Examine only
······		
······		10

Examiner only

(b) Image 2.3 shows part of a coral reef, an example of a biodiversity hotspot.Image 2.3

- (i) Define the term biodiversity.
- (ii) Describe the process through which this biodiversity has been generated.

.....

[1]

[3]

Examiner only

(c) Scientists compared the biodiversity levels in two different ecosystems, the tropical rainforests and the arctic tundra. The location of these ecosystems are shown in **image 2.4**. **Images 2.5 and 2.6** show examples of these ecosystems.

Image 2.5 – tropical rainforest

Image 2.6 – arctic tundra

Simpson's diversity index was calculated for the two ecosystems. The diversity index of the tropical rain forest was 0.96 and the tundra was 0.34. **Using the data**, conclude which ecosystem was more diverse. Suggest **one** reason for the higher biodiversity in this ecosystem. [2]

B400U201 09

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

© WJEC CBAC Ltd.

10

B400U201 11

(11)	Using image 3.2 and your own knowledge:	
	I. Describe and explain the change in capillary hydrostatic pressure between the arteriole end and the venule end. [4]	ר]
	II Explain why there is a net movement of water back into the capillary at the	
	venule end. [3]]

Examiner only

(b)	Lymphatic filariasis is a medical condition caused by parasitic worms which block the lymphatic vessels. This can result in swelling of the legs as shown in image 3.4 .	; ;
	Image 3.4	
	Affected legUnaffected leg	
	Explain the appearance of the affected leg. [1]	B400U201
.		
		12
13	© WJEC CBAC Ltd. (B400U20-1) Turn over.	

Examiner

- Bar-headed geese fly at high altitude during their migration. A sample of blood was taken from an adult Bar-headed goose and the haemoglobin was analysed. The percentage saturation of the haemoglobin was measured when exposed to varying concentrations of oxygen. This was repeated for the haemoglobin of a domestic duck. The results are shown in image 4.1.
 Image 4.1
 - Percentage saturation of haemoglobin with oxygen 90 80 70 60 50 40 30 20 -Bar-headed goose 10 Domestic duck 0 Partial pressure of oxygen/kPa Explain the advantage of the position of the curve for Bar-headed goose haemoglobin (a) (i) compared to the curve for the domestic duck haemoglobin. [3]

 (iii) The mean total blood volume for an adult Bar-headed goose is 5 × 10⁵ mm³. The mean total number of red blood cells in an adult Bar-headed goose is 1.46 × 10¹². Calculate the density (number per mm³ blood) of red blood cells within an adult Bar-headed goose. Express your answer to two significant figures. [3] Density =		[2]
Density = per mm ³ blood (iv) The red blood cell density of domestic duck blood is 1.4 × 10 ⁶ . Compare the red blood cell density of the domestic duck and the Bar-headed goose. Suggest a reason for this. [2]	(iii)	The mean total blood volume for an adult Bar-headed goose is 5×10^5 mm ³ . The mean total number of red blood cells in an adult Bar-headed goose is 1.46×10^{12} . Calculate the density (number per mm ³ blood) of red blood cells within an adult Bar-headed goose. Express your answer to two significant figures . [3]
	(iv)	$\label{eq:Density} \mbox{ =} \mbox{ per mm}^3 \mbox{ blood}$ The red blood cell density of domestic duck blood is $1.4 \times 10^6.$ Compare the red blood cell density of the domestic duck and the Bar-headed goose. Suggest a reason for this. [2]

	(ii)	State the name of the effect of pH on haemoglobin saturation. Using your own knowledge, suggest how the change in pH of the goose's blood has caused this effect. [4]	Examiner only
(C)	For a lipida State goos	a goose to fly, it requires a lot of energy some of which is gained from the digestion of s. The digestive system of a goose is similar to that of a human. e the main site of lipase secretion and name the products of lipid digestion in the se. [2]	
			18
17		© WJEC CBAC Ltd. (B400U20-1) Turn over.	

19

(b)	Plants like alfalfa, use l transports around the p AsA can be taken in by	ight energy to make plant. Ascorbic acid (/ leaf cells when app	carbohydrates such as sucro AsA) is a natural carbohydrate lied to the surface.	se, which it then e found in plants.
	Radiolabelled ascorbic in image 5.4A . Autora after 12 hours. The res	acid, ¹⁴ C-AsA, was diography was carri ults are shown in im	applied to leaf X of an alfalfa ed out to identify where ¹⁴ C- <i>i</i> age 5.4B.	a plant as shown AsA was located
	Image 5.4A		Image 5.4B	
	leaf X	leaf Y		
				shoot tip root tips
	Alfalfa p	lant	Autoradiograph of	
			Alfalfa plant	
	 (i) State the process (ii) ¹⁴C-AsA was foulliest Y. Explain the 	s by which carbonyc und in the root tips a ese results.	and shoot tips of the plant, b	ut not in mature

Time/hr Leaf Shoot tip Root tip 6 24 26 28 12 20 27 25 (iii) Describe the change in ¹⁴ C-AsA concentrations between 6 and 12 hours at the root tip. Suggest a reason for the concentrations of ¹⁴ C-AsA at 12 hours. [2] (iv) State two factors that would need to be controlled to ensure confidence in the results. [1] The experiment was only carried out once for 12 hours. State how this would affect the reliability of the data. Explain your answer. [1] Suggest how the experiment could be modified to investigate the rate of transport of AsA through the plant. [2]		 : (1	Concer	ntration of ¹⁴ C-AsA/m	mol dm ³	
6 24 26 28 12 20 27 25 (iii) Describe the change in ¹⁴ C-AsA concentrations between 6 and 12 hours at the root tip. Suggest a reason for the concentrations of ¹⁴ C-AsA at 12 hours. [2] (iv) State two factors that would need to be controlled to ensure confidence in the results. [1] The experiment was only carried out once for 12 hours. State how this would affect the reliability of the data. Explain your answer. [1] Suggest how the experiment could be modified to investigate the rate of transport of AsA through the plant. [2]		lime/hr –	Leaf	Shoot tip	Root tip	
12 20 27 25 (iii) Describe the change in ¹⁴ C-AsA concentrations between 6 and 12 hours at the root tip. Suggest a reason for the concentrations of ¹⁴ C-AsA at 12 hours. [2] (iv) State two factors that would need to be controlled to ensure confidence in the results. [1] The experiment was only carried out once for 12 hours. State how this would affect the reliability of the data. Explain your answer. [1] Suggest how the experiment could be modified to investigate the rate of transport of AsA through the plant. [2]		6	24	26	28	
 (iii) Describe the change in ¹⁴C-AsA concentrations between 6 and 12 hours at the root tip. Suggest a reason for the concentrations of ¹⁴C-AsA at 12 hours. [2] (iv) State two factors that would need to be controlled to ensure confidence in the results. [1] The experiment was only carried out once for 12 hours. State how this would affect the reliability of the data. Explain your answer. [1] Suggest how the experiment could be modified to investigate the rate of transport of AsA through the plant. [2] 		12	20	27	25	
Suggest how the experiment could be modified to investigate the rate of transport of AsA through the plant.						
	(iv Th rel) State two fac results. e experiment was iability of the data	tors that would n s only carried out . Explain your ans	once for 12 hours. S	to ensure confid	dence in the [1] uld affect the [1]
	(iv Th rel Su thr) State two fac results. e experiment was iability of the data ggest how the exp ough the plant.	tors that would n only carried out Explain your ans	once for 12 hours. S swer.	to ensure confident	dence in the [1] uld affect the [1] usport of AsA [2]

6. Using the information in **Image 6.1** and your knowledge of gas exchange in organisms, explain how *Paramecium caudatum* is adapted for gas exchange. Explain the adaptations shown by *Pseudoceros ferrugineus* and *Eisenia fetida* which have allowed their evolution into larger multicellular organisms. [9 QER]

Organism	Features
Paramecium caudatum	 Protoctista single celled 0.25 mm length aquatic environment
Pseudoceros ferrugineus	 Flatworm multicellular 18–48 mm length thin aquatic environment
Eisenia fetida	 Annelid multicellular 80 mm length terrestrial environment contains haemoglobin folded body surface

Image 6.1

23	
	Examiner
	only
	J

24	
	Examiner only

25	
	Examine
ΕΝΠ ΟΕ ΡΔΡΕΒ	9
25 © WJEC CBAC Ltd. (B400U20-1)	Turn over.

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

